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Stabilization of Networked Control Systems
under Feedback-based Communication

Lei Zhang and D. Hristu-Varsakelis†

Abstract— We study the stabilization of a networked control
system (NCS) in which multiple sensors and actuators of a
physical plant share a communication medium to exchange
information with a remote controller. The plant’s sensors and
actuators are allowed only limited access to the controller at
any one time, in a way that is decided on-line using a feedback-
based communication policy. Our NCS model departs from
those in previous formulations in that the controller and
plant handle communication disruptions by “ignoring” (in a
sense that will be made precise) sensors and actuators that
are not actively communicating. We present an algorithm
that provides a complete and straightforward method for
simultaneously determining stabilizing gains and communi-
cation policies and avoids the computational complexity and
limitations associated with some previously proposed models.
We introduce three feedback-based scheduling policies that
quadratically stabilize the closed-loop NCS while achieving
various objectives related to the system’s rate of convergence,
the priorities of different sensors and actuators, and the
avoidance of chattering.

I. I NTRODUCTION

A control system is called anetworked control system
(NCS) if its feedback loop(s) are closed via a shared
communication medium. In a NCS, the medium’s limited
capacity must be allocated to all the actuators, sensors,
and controllers in the system. As a consequence, various
communication constraints such as delays [1], [2], [3], data
rate limitations [4], [5], [6], quantization effects [7], [8],
[9], and medium access constraints [10], [11], [12], [13] all
become potential problems whose effects on closed-loop
performance and controller design must be understood and
dealt with.

The focus of this paper is the stabilization of NCS under
medium access constraints. More precisely, we consider
a NCS in which multiple sensors (outputs) and actuators
(inputs) of a physical plant are connected to a remote con-
troller via a shared communication medium. The medium
has limited number of channels so that at any one time only
some of the sensors and actuators can exchange information
with the controller, while others must wait. In contrast to
traditional control systems, the control of NCS involves
choosing not only the controller but also a medium access
strategy. Traditionally, the design of each of these two
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components has been studied separately by selecting one
while assuming the other is given.

In [10], the temporal order of the medium access for the
sensors and actuators was described by a“communication
sequence”. Given a periodic communication sequence, the
problem of designing a constant feedback controller that
stabilizes a linear plant is NP-hard [14], [11]. Under the as-
sumption that the feedback controller has been designed in
advance (for good performance in the absence of communi-
cation constraints), two classes of medium access strategies
have been proposed. These are termedstatic access schedul-
ing and dynamic (or feedback-based) access scheduling.
Under static scheduling, the order of medium access for the
sensors and actuators is designed off-line and remains fixed
over time. Static scheduling can be implemented via MAC
(Medium Access Control) protocols such as polling, token-
passing, and TDMA. The existence and design of periodic
communication sequences (a subclass of static scheduling
protocols) that stabilize a NCS was studied in [15]. In [13],
the schedulablity of NCS under static scheduling is verified
by the rate monotonic (RM) rule.

Static scheduling may be less robust when the plant is
subject to unpredictable disturbances, because the controller
may not be able to respond quickly to a sensor or actuator
that requires immediate attention. Moreover, a global timer
is needed to synchronize all the sensors and actuators.
These restrictions have fueled research on dynamic access
scheduling in which the access to the medium is determined
in real-time based on a feedback-based arbitration policy.
Examples of dynamic scheduling policies include MEF-
TOD [12], [16] and CLS-ε [17]. Dynamic scheduling can
be implemented via random access MAC protocols such as
CSMA/CR (Carrier Sense, Multiple Access, with Collision
Resolution).

It should be noted that most of the medium access
strategies proposed in previous works have focused only on
NCS whose dynamics are “block-diagonal”, in the sense
that they consist of collections of sub-systems that are
uncoupled in the absence of communication constraints, as
is the case with [17], or are attached to very conservative
stability criteria [16]. Furthermore, most previous works
assume zero order holding (ZOH) at the receiver side of
a communication medium: when an actuator or sensor fails
to access the medium the value stored in a ZOH will be fed
to the plant or controller. In this work, we forgo the use of
ZOH and letzerobe fed into the plant or controller when an
actuator or sensor fails to access the medium. We show that
this protocol leads to a simpler but more powerful model



for NCS which enables one to jointly design a stabilizing
feedback gain and a dynamic access scheduling policy,
and to investigate their interactions. The design method
presented in this paper is based on switched system theory
[18] and can be used with a more general class of NCS,
which have “fully coupled” dynamics.

The remainder of this paper is structured as follows:
In Section II, we describe a switch system-based model
for NCS under static feedback. In Section III, we present
an algorithm that allows one to design a static feedback
controller that guarantees the stabilizability of a NCS. In
Section IV, we introduce three feedback-based medium
access scheduling policies that quadratically stabilize a NCS
while achieving different design objectives related to the
system’s rate of convergence, the priorities of different
sensors and actuators, and the avoidance of chattering.
Section V contains simulations that illustrate our design
approach.

II. M ODELING NCS

Controller
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Fig. 1. A Networked Control System withm inputs andn outputs.

Consider the NCS depicted in Fig. 1 and suppose that
the plant is a controllable LTI system:

ẋ(t) = Ax(t) + Bu(t); x ∈ R
n
,u ∈ R

m (1)

wherex = [x1, · · · , xn]T and u = [u1, · · · , um]T are the
states and inputs of the plant. For now we will assume
state feedback, meaning that all of then statesxi are
available for measurement by a corresponding sensor. The
communication medium connecting the sensors and the
controller haswσ (1 ≤ wσ < n) channels (called theoutput
channels). At any one time, onlywσ of the n sensors can
access these channels to communicate with the controller
while others have to wait. At the input side, each of the
plant’s inputs is connected to an actuator. Them actuators
sharewρ (1 ≤ wρ < m) input channelsto communicate
with the controller, onlywρ of the m actuators can access
the input channels at any one time.

A. The effect of medium access constraints

For i = 1, · · · , n, let the binary-valued functionσi(t)
denote the medium access status of sensori at time t, i.e.
σi(t) : R �→ {0, 1}, where 1 means “accessing” and0
means “not accessing”. The medium access status of the
n sensors over time can be represented by the“ n-to-wσ”
communication sequence”([11], [17])

σ(t) = [σ1(t), · · · , σn(t)]T

Definition 1: An M-to-N communication sequence is a
mapσ(t) : R �→ {0, 1}M , satisfying‖σ(t)‖2 = N , ∀t.

Any given output, sayxi(t), is available to the con-
troller only when its sensor is accessing the communication
medium, i.e.σi(t) = 1. When sensori cannot access the
communication medium (σi(t) = 0), we assume that a
zero value will be used by the controller for that sensor
to generate the control signals, while the actual output
xi(t) will be ignored due to its being unavailable. Let
x̄i(t) denote the output signal used by the controller at
time t, based on the above protocol; then, we can write
x̄i(t) = σi(t) · xi(t); ∀i, t.

We define thematrix form of a communication sequence
η(t) to be

Mη(t) � diag(η(t))

If we let x̄ = [x̄1, x̄2, · · · , x̄n]T , we see that the signal
available to the controller is not the statex but rather

x̄(t) = Mσ(t) · x(t) (2)

Similarly, whenever actuatorj loses its access to the
communication medium, the actual control signal generated
at the controller for that actuator will be unavailable to
and hence ignored by the plant. Instead, we let the plant
use azero value for uj until actuator j regains access.
We represent the medium access status of the plant’sm
actuators by anm-to-wρ communication sequence (see
Definition 1),ρ(t). Let ū = [ū1, · · · ūm]T denote the actual
signal generated by the controller and letu(t) denote the
input signals as viewed from the plant. The two are related
by

u(t) = Mρ(t)ū(t) (3)

Finally, let the controller in Fig.1 be given by the feed-
back law

ū(t) = K · x̄(t) (4)

From (1)-(4), we see that the closed-loop dynamics of the
NCS are

ẋ(t) = (A + BMρ(t)KMσ(t))x(t) (5)

The above discussion is summarized in the block diagram
of Fig. 2.

Mρ(t) Mσ(t)ẋ = Ax + Bu

K
ū x̄

u x

Fig. 2. The closed-loop dynamics of a NCS

Remark 1:As we have mentioned, previous works (e.g.
[10], [11]), have often assumed that there is a zero-order-
hold (ZOH) at the receiving side of a communication
medium. The use of ZOH significantly increases the sys-
tem’s complexity because it introduces time-varying de-
lays to the closed-loop dynamics (see, for example, the



“extensive form” in [11] and other similar constructions).
Moreover, holding delayed input/output for the entire ac-
cess disruption period may not necessarily benefit system
performance. In this work, we have chosen to “ignore” the
inputs or outputs that are not actively communicating. We
have shown that the effect of medium access constraints
is equivalent to cascading the original plant with a pair
of communication sequences (in their matrix form). The
resulting closed loop dynamics (5) have lower complexity
than previous models and lead to a straightforward and
complete solution to the stabilization problem, as we will
show next.

B. An equivalent switched system

Without loss of generality, we begin with the case
wσ = wρ = 1. Now ρ(t) is an m-to-1 communication
sequence andσ(t) is an n-to-1 communication sequence.
By definition, ρ(t) can only havem possible values and
σ(t) can only haven possible values. Hence the closed
loop NCS (5) is essentially a switched system withm · n
possible dynamics.

For simplicity, it will be helpful to introduce one ad-
ditional piece of notation. Letη(t) be a p-to-1 com-
munication sequence. By definition,η(t) takes on val-
ues on the set of standardp-dimensional basis vectors,
Ep = {e1

p, e
2
p, · · · , ep

p}, where e1
p = [1, 0 · · · 0]T , e2

p =
[0, 1, 0 · · · 0]T , · · · ep

p = [0 · · · 0, 1]T . We define thescalar
form of the communication sequenceη(t) to be the map
η̄(t) : R �→ {1, · · · p}, such thatη(t) = e

η̄(t)
p , ∀t. In

other words,̄η(t) equalsi if η(t) = ei
p.

Now let the scalar forms ofρ and σ be ρ̄(t) and σ̄(t),
and lets(t) = [ρ̄(t), σ̄(t)]. Then, the closed loop system (5)
is equivalent to the following switched system

ẋ = As(t)x (6)

wheres(t) defines a switching rule,s(t) : R �→ {1, · · ·m}×
{1, · · ·n}. The matrixAs(t) takes values on the set

{Aij : i = 1, · · · ,m; j = 1, · · · , n}
whereAij denotes the closed-loop dynamics when actuator
i and sensorj are accessing the communication medium,
i.e. ρ = ei

m andσ = ej
n. From (5) it easy to see that

Aij = A + BKij (7)

whereKij = diag(ei
m) · K · diag(ej

n).
We note that although we have assumedwσ = wρ = 1,

all of the discussion in this paper applies to any number of
channels. For example, when the communication medium
haswρ (1 < wρ < m) input channels andwσ (1 < wσ <
m) output channels, thenρ(t) andσ(t) will have

(
m
wρ

)
and(

n
wσ

)
possible values, respectively. The closed loop system

will then switch between
(

m
wρ

) · (
n

wσ

)
possible dynamics.

The required modifications are straightforward and will not
be given here.

III. STABLE CONVEX COMBINATIONS

As demonstrated in [19], the switched system (6) is
stabilizable under a feedback-based switching rules(t) if
there exist positive real numbersαij , i = 1, · · · ,m, j =
1, · · · , n, satisfying

m∑
i=1

n∑
j=1

αij = 1 (8)

such that the convex combination ofAij ’s

A �
m∑

i=1

n∑
j=1

αijAij (9)

is stable. IfA is stable, it is well known that there exist
positive definite matricesP,Q such thatAT P +PA = −Q.
Then for allx(t) �= 0

xT (t)(AT P + PA)x(t) = −xT (t)Qx(t) < 0

An important fact in the proof of the stable convex combi-
nation result is that the last equation can be rewritten as∑

i,j

αijx
T (t)(AT

ijP + PAij)x(t) = −xT (t)Qx(t) < 0

for all x(t) �= 0. Becauseαij > 0 it follows that for all
x(t) �= 0 there always exist indicesi(x) ∈ {1, · · ·m} and
j(x) ∈ {1, · · ·n} such that

xT (t)(AT
i(x)j(x)P + PAi(x)j(x))x(t) < 0

Hence if the switched system is switched according to
s(t) = [i(x(t)), j(x(t))] the Lyapunov functionV (t) =
xT (t)Px(t) will always be decreasing.

Here the stabilizability of the switched system (6) re-
lies on the existence of a stable convex combination (9).
However, if theAij ’s are given and the number of possible
dynamics (in our case,m·n) is greater than two, identifying
such a stable convex combination (if one exists) is NP-
hard [20]. Fortunately, in a NCS we also have the freedom
to design the controller in order to obtain a stable convex
combination (9).

From (7), we see thatA can be expressed as

A �
∑
i,j

αijAij = A + BK (10)

where

K =




α11k11 α12k12 · · · α1nk1n

α21k21 α22k22 · · · α2nk2n

· · · · · ·
αm1km1 αm2km2 · · · αmnkmn


 (11)

andkij is the(i, j) entry ofK. Now a feedback gainK that
guarantees a stable convex combination (9) can be found by
the following
Algorithm:

1) Choosem · n positive numbersαij ’s such that (8) is
satisfied.

2) Choose a set of desired (stable) eigenvalues forA.



3) Solve the pole-placement problem forK, such that
A = A + BK has the desired eigenvalues, provided
that (A,B) is controllable.

4) Solve forK = [kij ]m×n from (11).

Notice that for the same choice ofA, different choices of
αij ’s results in different values of the feedback gainK. A
largerαij leads to a smallerkij . This fact gives us additional
freedom in the design ofK. By properly choosingαij ’s
we can make the controllerK meet certain optimization or
design criterion, for example,maxi,j |kij | < km, wherekm

is the highest gain a controller may provide. Moreover, in
Section IV, we will show that under certain switching rule,
αij determines the “priority” (or “weight”) of the dynamics
Aij .

IV. M EDIUM ACCESS POLICIES THAT

GUARANTEE QUADRATIC STABILITY

In this section, we introduce three feedback based switch-
ing rules that guarantee the quadratic stability of (6).

Definition 2: [20] The system (6) is said to be quadrat-
ically stable if there exists a positive definite quadratic
function V (x) = xT Px, a positive numberε and a
switching rule s(t) such that d

dtV (x) < −εxT x for all
trajectoriesx of the system (6).

We call the numberε in the above definition thequadratic
decay rateof the switched system.

Notice that the Lyapunov functionV = xT Px is
continuous and piecewise differentiable along trajectories
of (6). Then between any two consecutive switches

d

dt
V = xT (t)(AT

s(t)P + PAs(t))x(t) (12)

As suggested in [19], the switching rule that ensures max-
imum instantaneous decay ofV is the following

Fastest Decay (FD): For all t, let s(t) be determined by

s(t) = arg min
i,j

xT (t)[AT
ijP + PAij ]x(t) (13)

The idea of the FD rule is: at any timet, switch system
(6) to the set of dynamics that gives the fastest decay of
V (t). Now define

ε∗ � λmin(Q)
m · n · αmax

(14)

whereQ is such that

AT P + PA = −Q (15)

λmin(Q) denotes the smallest eigenvalue ofQ, andαmax �
maxi,j αij . We thus have the following:

Theorem 1:If A is stable, for anyP > 0, system (6) is
quadratically stable under the switching rule FD, with the
quadratic decay rateε ≥ ε∗.

To prove Theorem 1, we must first introduce the “weighted-
FD (WFD)” switching rule

Weighted Fastest Decay (WFD):
For all t, let s(t) be determined by

s(t) = arg min
i,j

αijx
T (t)[AT

ijP + PAij ]x(t) (16)

Under the WFD rule, the switching signals(t) is de-
termined not only by the potential values ofV̇ associated
with the m · n possible dynamics, but also by the values
of αij ’s. From (16), we see that eachαij acts as a weight
associated with the dynamicsAij . A greaterαij will result
in a greater chance that (6) is switched toAij . Note thatAij

corresponds to the dynamics whenui andxj are accessing
the communication medium. Hence the choice ofαij ’s
actually assigns “priorities” for every input and output of
the NCS.

Theorem 2:If A is stable, for anyP > 0, system (6)
is quadratically stable under the switching rule WFD, with
the quadratic decay rateε ≥ ε∗.

Proof: SinceA is stable, there exists a positive definite
matrix Q such thatAT P + PA = −Q. Then for allx �= 0

m∑
i=1

n∑
j=1

αijx
T (t)[AT

ijP + PAij ]x(t) = −xT (t)Qx(t)

(17)
(16) and (17) imply, for allt,

αs(t)x
T (t)[AT

s(t)P + PAs(t)]x(t) ≤ −xT (t)Qx(t)
m · n

Hence

V̇ (t) = xT (t)(AT
s(t)P + PAs(t))x(t)

≤ −xT (t)Qx(t)
m · n · αs(t)

≤ − λmin(Q)
m · n · αmax

xT (t)x(t)

Now the proof of Theorem 1 is straightforward because
under FD, the instantaneous value ofV̇ is, by definition, less
than or equal to that when (6) is under any other switching
rules, including WFD. Hence, at any time, the decay rate
of (6) under FD must be greater than that when (6) evolves
under WFD.

Although Theorems 1 and 2 provide switching rules
that guarantee quadratic stability the switching rate is not
bounded under the FD or WFD rule. High-speed switching
is often impractical and may lead to chattering. One way to
bound the switching rate is to introduce a minimumdwell
time [18] τ > 0 and restrict the interval between any two
consecutive switches to be no smaller thanτ . The switching
rule we introduce next guarantees a dwell time between
switchings. The idea is to let the system evolve with one
set of dynamics until the decay rate ofV is less than a
certain threshold.

Guaranteed Dwell-time (GD):
Let ε0 be a number satisfying0 < ε0 < ε∗

1) Denote the current switch time byt0, chooses(t0)
according to (13)



2) Let s(t) = s(t0) for all t ∈ [t0, t1), wheret1 is the
next switch time determined by

t1 =

inf
t>t0

xT (t)(AT
s(t0)

P + PAs(t0))x(t) ≥ −ε0x
T (t)x(t)

3) Repeat from step 1 fort1

Theorem 3:If A is stable, for anyP > 0, system (6) is
quadratically stable under the switching rule GD with the
decay rateε ≥ ε0. Moreover there exists a numberτ > 0,
such that the dwell time between any consecutive switches
is no greater thanτ .

Proof: The quadratic stability of (9) is obvious because
according to GD,V̇ < −ε0x

T (t)x(t) for all t. We only
need to prove boundedness of the dwell time. Lett0 and
t1 (t0 < t1) be any two consecutive switching times. For
t ∈ [t0, t1), define

φ(t) = −
xT (t)(AT

s(t0)
P + PAs(t0))x(t)

xT (t)x(t)

φ(·) is continuous and differentiable in[t0, t1). Let
AT

s(t0)
P + PAs(t0) = −Qs(t0), then for allt ∈ [t0, t1)

φ̇(t) =
xT Rs(t0)x · xT x − xT Qs(t0)x · xT Ss(t0)x

(xT x)2
(18)

whereRs(t0) = AT
s(t0)

Qs(t0) + Qs(t0)As(t0) and Ss(t0) =
AT

s(t0)
+ As(t0). Now let γQ = maxi,j r(Qij), γR =

maxi,j r(AT
ijQij + QijAij), and γS = maxi,j r(AT

ij +
Aij), where Qij = −(AT

ijP + PAij), and for a square
matrix B, r(B) is its spectral radius, defined asr(B) �
maxi(|λi(B)|). Now from (18), it is easy to verify that for
all t ∈ [t0, t1), |φ̇(t)| ≤ γR + γQ · γS . Hence |φ(t−1 ) −
φ(t0)| ≤ (γR + γQ · γS)(t1 − t0), where t−1 denotes the
instant right before the switch taking place att1. Notice
that φ(t0) ≥ ε∗ because at the beginning of each switch,
s(t) is determined by (13). Alsoφ(t−1 ) = ε0 according to
the GD policy . Hence|φ(t−1 ) − φ(t0)| ≥ ε∗ − ε0, and

t1 − t0 ≥ ε∗ − ε0
γR + γQ · γS

(19)

V. SIMULATIONS

Let the plant be the unstable batch reactor ([21], p.62)

ẋ =




1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104


 x

+




0 0
5.67 0
1.136 −3.146
1.136 0


 u ,

which has two inputs and four outputs (its states). The batch
reactor is being controlled by a static feedback controller

K via a shared communication medium which has only
one input channel and one output channel. The closed-loop
NCS is equivalent to a switched system switching between
eight possible linear dynamicṡx = Aijx, (i = 1, 2, j =
1, 2, 3, 4). We first choose theαij ’s to be

[αij ] = α† =
[

1/6 1/6 1/6 1/6
1/12 1/12 1/12 1/12

]

and the desired eigenvalues ofA (9) to be [−5,−6,−4
,−3]. We solve the pole-placement problem (10) forK,
and then solve forK from (11). The feedback gainK
corresponds toα† is

K = K† =
[

0.5463 −3.1950 −0.8567 −2.2001
23.0186 4.3389 10.4101 −2.6616

]

We chooseQ = I and solve forP from (15). Figure 3(a)
is the evolution of the statex under the FD rule andK†.
According to (14), the quadratic decay rate is at leastε∗ =
3/4. Figure 3(b) is the evolution of the statex under the
GD switching rule andK†. The minimum decay rate was
chosen asε0 = 0.1.
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Fig. 3. Trajectories ofx under the FD and GD rule (K = K†)

Next we show how theαij ’s act as medium access
priorities under the WFD rule. Notice that the first row
in [αij ] corresponds to the priority ofu1, the second row
corresponds to the priority ofu2. Hence the inputu1 is
given higher priority thanu2 in α†. Now we choose a
different set ofαij ’s,

[αij ] = α‡ =
[

1/12 1/12 1/12 1/12
1/6 1/6 1/6 1/6

]

whereu2 is given higher priority. For the same choice of
A, the feedback gainK corresponding toα‡ is

K = K‡ =
[

1.0927 −6.3900 −1.7135 −4.4002
11.5093 2.1694 5.2050 −1.3308]

]

Note that the first row ofK‡ (corresponding to the input
u1) is a half of the first row ofK†, while the second row
of K‡ (corresponding tou2) is twice of the second row
of K†. This tells us that if an input gets higher medium



access priority, less control effort will be needed for that
input (This also holds for the FD and GD rule).

We implement the WFD rule in the NCS for the two
sets of priorities,α† and α‡, with their corresponding
feedback gains. Our simulation results show that the NCS
is stable under either of the two sets. However, the input
communication sequences that stabilize the NCS are very
different. As shown in Fig. 4, whenu1 is given higher
priority (Fig. 4(a)), most of the medium access time is given
to the inputu1; whenu2 is given higher priority (Fig. 4(b)),
most of the medium access time is given to the inputu2.
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Fig. 4. The input communication sequenceρ̄(t) under the WFD rule.
(a): usingα† andK†; (b): usingα‡ andK‡

The above result shows that, for each input, higher
priority means longer medium access time.

VI. CONCLUSIONS ANDFUTURE WORK

We have discussed the problem of jointly designing a
feedback controller and medium access strategy for stabiliz-
ing a linear network-controlled system (NCS). In our NCS
model, actuators or sensors that are not actively accessing
the communication medium are effectively “ignored” by
the plant and controller. In that setting, the complexity of
the stabilization problem becomes quite manageable. We
presented an algorithm for designing stabilizing feedback
gains by solving a standard pole-placement problem. Using
these gains, one can then choose from three feedback-based
medium access scheduling policies (FD, WFD, and GD)
to stabilize the system. The FD policy guarantees fastest
decay of a quadratic Lyapunov function; the WFD policy
allows one to affect the attention given to different inputs
and outputs; the GD policy guarantees a minimum dwell
time between any two consecutive switchings, to avoid
chattering.

Here, we have assumed that state feedback was avail-
able. A straightforward extension is to address the output
feedback case, where the plant output isy(t) = Cx(t),
with C a p-by-n matrix (p < n). In this case, an observer

may be used to reconstruct the state at either the plant or
the controller side of the communication medium. We are
exploring the construction of such observers under periodic
and feedback-based communication.
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